검색결과 리스트
전체 글에 해당되는 글 782건
- 2023.11.01 p value(유의확률)와 통계량
- 2023.11.01 p value(유의확률)를 표기하는 방법
- 2023.11.01 부등식의 표현 이해
- 2023.11.01 공(空)과 무(無), 0과 null
- 2023.11.01 검증(檢證)과 검정(檢正)
글
p value(유의확률)와 통계량
p value와 통계량은 연결되어 있다. 어쩌면 당연한 이야기이다.
하지만 직접 계산하여 통계량을 산출해 본 경험이 없이 통계 프로그램이 보여주는 결과값만을 확인해본 것이 전부라면, 따로따로 제시되는 유의확률과 통계량을 별도의 것으로 이해하는 경우도 생길 수 있다.
t test를 통해 통계량 t=2.127로 나와다면 무조건 p<.05일 수밖에 없다. 만일 당신이 통계적 유의미성만 확인하고자 한다면, 통계량 또는 p value 둘 중 하나만으로도 충분히 그 결과를 해석할 수 있다.
설정
트랙백
댓글
글
p value(유의확률)를 표기하는 방법
2010년의 APA((American Psychological Association) style manual 제6판(p.141)에 따르면, p value를 다음과 같이 표기하라고 말한다.
① 소숫점 앞의 0은 표기하지 않는다. 예) 0.051(X) .051(O)
② 소숫점 셋째자리까지 직접 기술한다. 예) p=.051
③ 만일 .000보다 더 작다면(예를 들어 p=.000123), p<.001로 표기한다.
※ SPSS의 경우 버전 26까지는 .000으로, 버전 27부터는 p<.001로 나타낸다.
덧붙여 몇 가지 주의사항을 언급해보자면,
④ 통계에서 쓰는 기호는 기본적으로 이탤릭체로 쓰며, 사이띄우기는 하지 않는다.
⑤ 또한, “유의미하다(significant)”의 반대말은 “무의미하다(insignificant)”가 아니라, “유의미하지 않다(nonsignificant)”이다.
'[楞嚴] 생각 나누기 > [平] 사회조사와 데이터분석' 카테고리의 다른 글
평균 추론에 필요한 조건 (0) | 2023.11.01 |
---|---|
왜 유의확률(p value)은 0.05를 기준으로 하는가? (0) | 2023.11.01 |
부등식의 표현 이해 (0) | 2023.11.01 |
공(空)과 무(無), 0과 null (0) | 2023.11.01 |
검증(檢證)과 검정(檢正) (0) | 2023.11.01 |
설정
트랙백
댓글
글
부등식의 표현 이해
우리는 초등학교 때 부등식에 대해 배웠다. 그리고 나이가 들면서 미만/이하, 초과/이상의 구분은 기억하고 있다. 하지만 오히려 이를 우리말로 표현하면 헷갈려한다.
통계에서 영가설의 기각 여부를 판단하는 기준으로 유의확률 p<.05와 같이 표현하곤 한다. 이는 p value가 0.05보다 작다는 말이지만, 0.05보다 크지 않다는 뜻은 아니다.
덧붙여 부등호 중 ‘작거나 같다’ 또는 ‘크거나 같다’의 표기는 ≤와 ≥를 사용한다. 하지만 예전에 수학을 배우신 분들은 ≦와 ≧가 더 익숙할 것이다. ≤과 ≦, ≥과 ≧은 같은 의미이다. 그리고 오늘날은 ≤과 ≥를 사용한다.
'[楞嚴] 생각 나누기 > [平] 사회조사와 데이터분석' 카테고리의 다른 글
왜 유의확률(p value)은 0.05를 기준으로 하는가? (0) | 2023.11.01 |
---|---|
p value(유의확률)를 표기하는 방법 (0) | 2023.11.01 |
공(空)과 무(無), 0과 null (0) | 2023.11.01 |
검증(檢證)과 검정(檢正) (0) | 2023.11.01 |
2. 분석방법을 선택하는 두 가지 기준, 두 번째: 변수의 속성 (0) | 2023.11.01 |
설정
트랙백
댓글
글
공(空)과 무(無), 0과 null
없다는 것을 나타내는 다양한 표현이 있다. 0, ○(공), 無 그리고 null 등 이들은 서로 어떻게 다른 것일까?
일단 우리는 숫자 0을 영(零)과 공(空)으로 읽는다. 하지만 원칙은 ‘영’으로 읽는 것이 맞다. 굳이 구분하자면 공은 ○과 같은 기호로 보는 것이 옳을 듯하다.
하지만 이것은 무(無)와는 조금 다르다. 불교에서는 색즉시공(色卽是空)이라 말한다. 있는 것(色)이 어떻게 없는 것(空)이 될 수 있을까라는 오묘한 철학적 논쟁은 잠시 뒤로 미뤄두고 그 표현만 가져와보자. 있는 것이 없어졌다면 그것은 없는 것(無)인가 없어진 것(空)인가? 당연히 후자일 것이다. 애초에 없는 것을 무(無)라 하고, 없어진 것을 공(空)이라 한다.
그런데 이런 개념은 신기하게도 프로그래밍에서도 등장한다. 바로 null과 0이다. 예를 들어 종이에 0이라는 숫자 하나를 썼다고 가정해보자. 이는 숫자 0이 있는 것이다. 반면 아무 것도 쓰여지지 않은 빈 종이를 null이라 할 수 있다.
즉, 무(無)는 null에, 영(零) 또는 공(空)은 0에 대입할 수 있을 것이다. 그렇다면 null hypothesis는 표현 그대로라면 귀무(歸無)가설이라고 말할 수 있겠지만, 차이가 없다는 말이 null이라는 뜻은 아니니 영(零)가설이 더 타당하지 않나 싶기도 하다.
'[楞嚴] 생각 나누기 > [平] 사회조사와 데이터분석' 카테고리의 다른 글
p value(유의확률)를 표기하는 방법 (0) | 2023.11.01 |
---|---|
부등식의 표현 이해 (0) | 2023.11.01 |
검증(檢證)과 검정(檢正) (0) | 2023.11.01 |
2. 분석방법을 선택하는 두 가지 기준, 두 번째: 변수의 속성 (0) | 2023.11.01 |
나. 등분산 검정 (0) | 2023.11.01 |
설정
트랙백
댓글
글
검증(檢證)과 검정(檢正)
검증하다와 검정하다는 한글로 쓰면 비슷해보이지만, 그 의미는 분명히 다르다. 게다가 검정하다는 검정(檢定)과 검정(檢正)의 두 가지로 사용된다. 이를 구분하기 위해 영어표현을 살펴보자.
우리가 하는 것은 사회조사를 통해 해당 사실을 test하는 것이다. 따라서 검정(檢正)하다가 정확한 표현이다. 이 test와 관련하여 칼 포퍼(Karl Popper)는 그의 반증이론(The theory of Falsification)을 통해 사회과학에서 100% 확실한 진리를 검증(檢證)하는 것은 불가능에 가까운데, 왜냐하면 언제든 설명되지 않는 부분에서 반증자료가 나타날 가능성이 있기 때문이라 말한다.
그래서 가설은 검정(test)하는 것이지, 검증(verify)할 수는 없다.
'[楞嚴] 생각 나누기 > [平] 사회조사와 데이터분석' 카테고리의 다른 글
부등식의 표현 이해 (0) | 2023.11.01 |
---|---|
공(空)과 무(無), 0과 null (0) | 2023.11.01 |
2. 분석방법을 선택하는 두 가지 기준, 두 번째: 변수의 속성 (0) | 2023.11.01 |
나. 등분산 검정 (0) | 2023.11.01 |
가. 정규성 검정 (0) | 2023.11.01 |
RECENT COMMENT