5. 가설의 검정과 유의확률

반응형

앞선 예에서 우리는 “성별(A)에 따른 TV 시청 시간(B)에 평균의 차이가 없다.”는 영가설을 세웠다. 그리고 이 영가설을 검정하기 위해 통계기법을 활용해 데이터를 분석할 것이다. 그러면 그 결과로 ‘통계량’과 ‘유의확률(p)’을 얻게 될 텐데, 우리가 할 일은 이 유의확률로부터 영가설을 기각할 수 있을지 없을지를 결론내리는 일이다.
유의확률은 p 값(p value)라고도 하며, 0∼1 사이의 숫자로 p=.137과 같이 소숫점 셋째 자리까지 표시한다. 
p<.05는 ‘유의확률이 0.05보다 작다’로 읽는다. 풀어 설명해보자면, 성별에 따른 TV 시청시간에는 평균의 차이가 없다(영가설)가 사실이라고 가정할 때, 해당 결과가 나타날 확률이 5%보다 작다는 뜻이다. 바꿔 얘기하면, 차이가 있다는 결과를 얻을 확률이 95%보다 크다가 된다. 

p<.05이면, 영가설을 기각한다.

따라서 영가설은 기각되고, 대립가설이 채택(지지)된다. 즉, TV 시청 시간과 시력 간의 평균 비교에 있어 유의미한 차이가 있다고 결론내리게 된다.
한편, p>.05라면 어떻게 될까? 이때에는 ‘영가설을 기각할 근거가 충분하지 않다’고 말한다. 이때 이것이 영가설을 채택한다고 말하는 것은 아니다. 또한 통계적으로 유의미하지 않았다(nonsignificant)는 것이 무의미하다(insignificant)는 뜻은 아니다. 따라서 표현에 주의해야한다.

반응형