4. 가설의 검정의 전제조건

반응형

이제 가설을 검정해 볼 차례이다. 이때 한 가지 짚고 갈 것이 있다.
우리가 조사 대상 ‘전체’에 대해 설문 등을 실시하여 결과값들을 얻었다면, 그 결과는 그 자체로 사실이 된다. 예를 들어 인구주택총조사가 그렇다. 매 5년마다 대한민국 국민 전체를 대상으로 조사를 실시한다. 따라서 그 조사 결과는 그대로 사실이다.
하지만 많은 경우 전수를 조사하는 것은 비용과 시간이 많이 든다. 하여 우리는 대부분 표본(sample)을 뽑아서 그 결과를 분석한다. 이때는 당연히 이 표본이 전체 조사 대상(모집단)을 대표할 수 있다는 확신이 있어야 한다. 즉 표본조사의 결과값(모수 추정)이 전수조사의 결과값(모수)과 차이가 거의 없을 것을 전제한다.

가설 검정은 표본이 모집단을 대표할 수 있다는 확신을 전제한다.
모집단과 표본집단

여기서 등장하는 용어들은 모집단을 대상으로 하는가, 표본집단을 대상으로 하는가에 따라 약어 기호 표시들이 조금씩 다르다. 만일 앞선 전제를 충족하였다면 굳이 이 둘을 구분할 필요는 없다.

다시 돌아와 전제조건인 표본의 대표성 문제는 제대로 된 표본추출을 통해 해결이 된다. 연구자들은 표본이 모수를 정확히 추정할 수 있도록 하기 위해 표본을 뽑는(추출) 방법들에 대해 고민해왔고, 이런 표본추출방법은 확률표본추출과 비확률표본추출이 있다. 이 둘의 차이점은 딱 하나이다. 모집단의 구성원이 표본으로 선택될 확률이 동등하면 확률표본추출이라하고, 그렇지 않은 경우를 비확률표본추출이라 한다. 

모집단을 정확히 추정하기 위해서는 표본이 대표성을 가질 수 있도록 잘 추출해야한다.

 

반응형